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ABSTRACT 

The report considers the problem of applying neural network for logic testing and 

proposes an efficient method based on the hyperneural model. The conventional Hopfield 

network of TV neurons describes only binary relations between neurons. With this model, gates 

having more than two inputs need hidden neurons. Even two inputs XOR and XNOR gates 

require four neurons; one extra than that required by most other gates. Inclusion of an additional 

neuron doubles the search space. Thus, finding a valid test set using Hopfield model is either 

increasingly hard or the network converges to an invalid solution. The proposed hyperneural 

model overcomes these difficulties by using an energy function that not only considers binary 

relations but also captures all higher order relations between N neurons. A C++ code, developed 

for hyperneural network (HNN) based approach, is tested on a SUN SPARC 10/41 workstation 

for ISCAS'85 benchmark circuits and the results are compared with those obtained from 

MODEM and FAN. We have also applied the hyperneural concept for redundancy identification 

and removal problem in combinational circuits. Results, obtained for benchmark circuits, 

compare well with those given in the literature using conventional methods. 



INTRODUCTION 

The ability to put large number of gates on a single chip of silicon offers great potential 

for reducing power, increasing speed, and lowering the cost of digital circuits. These advantages 

are, however, offset unless VLSI chips are economically tested. An obvious reason for testing a 

chip coming off the manufacturing line is to see if it works. Testing, or more precisely, the 

determination of what tests to apply to a particular device is a physical-design task requiring 

computer aid. An automatic test pattern generation (ATPG) is characterized as a search problem 

where the set of possible input vectors of a logic circuit is systematically searched until a test 

pattern is found. Note that this problem is known to be AT-complete. 

We have begun investigating the ATPG problem using neural network based models 

because such models, described by a pseudo-Boolean quadratic function (called energy function), 

offer the advantage of applying optimization techniques. In addition, the non-causal form of the 

model allows the use of parallel processing for compute-intensive design automation tasks. By 

non-causal we mean that underlying models tend to blur the distinction between the input and 

output signals of logic elements. We also wanted to apply the method of our investigation for 

redundancy identification and removal problem in logic circuits, a sub-task commonly needed in 

synthesis problems. Besides the efforts of P. I., Suresh Rai, following graduate students helped 

achieve the goals of the project: W. Deng, K. Biswas, H. L. Johnson, R. Parthasarathy, Mohan 

D., Y. Liu, R. Jagdishan, A. Jagannnath, A. Bhosekar, A. Yellundur, and Xin Liao. While first 

two students were directly supported on the grant, remaining other students contributed by 

working on the topic or related issues as a part of their M.S. thesis requirements. A bibliography 

at the end of this report compiles our research results so far on the topic. 

TECHNIQUE AND RESULTS 

Theory 

We, first, started investigating binary and three-valued neural network (NN) 

models proposed in the literature for ATPG problem. These methods use Hop field's NN model 

or a variant of it to obtain an energy function for each 1- and 2-input gate (NOT, AND, OR, 

NAND, NOR, XOR). A collection of such functions is called a basis set. In the basis set, most 

two input gates require three neuron models. The XOR and XNOR gates, however, need four 

neurons to describe them. Neural models for all other gates with more than two inputs are 

constructed from the basis set by taking two inputs at a time. Since the underlying Hopfield 

network of N neurons describes only binary relations between them, gates with more than two 

inputs need hidden neurons to capture their functionality. Inclusion of an additional neuron in 

the model doubles the search space.  Thus, having n extra neurons means the search space is 
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increased by 2n. This situation may lead to the problem of scaleability. It means with increasing 

problem size the network becomes so big that simulation times are excessively long. Also, 

because of the presence of state space explosion and non-linear nature of digital circuits, finding 

a valid test set becomes increasingly hard. Alternatively, it may happen that the search may end 

up in an invalid solution. An issue, relevant to this, is the reliability of result. Hopfield type 

neural networks are found to be particularly useful for problems where solutions close to the 

optimal are quite acceptable (character recognition, for example); in the test generation, a close 

solution does not mean much — a vector is either a test or it is not. Another drawback of binary 

and three-valued NN models stems from the fact that they do not consider buffers and fan out 

lines. The basis set does not include any model for them; its 1-input NN list is limited to NOT 

gate only. Most circuits have both fan out lines and buffers in their description. 

The proposed hyperneural network approach generalizes the energy function to capture 

binary and higher order relations among N neurons. A hypergraph is suggested to represent the 

modified energy function of HNN model. To define the hyperneural network, we use a fully- 

connected hypergraph Q-iV, £) consisting of a finite set Voi vertices and a multiset £c2 of 

hyper edges to represent the modified energy function 

E = 
N i    N 

i -i,j 

i * j 

]       N i N 
~     ZTijkViVjVk -...--        I.Tij.jViVj...Vi        (1) 
J:i,j,k -i,j,...,l 

i*j*k i*j*...*l 

Here K is a constant, and N= \1A is the number of neurons in the network.   Various 7s are the 

weights associated with corresponding hyper edges. The elements of hyper edge es £ are called 

its terminals. A hyper edge with two elements is also called an edge or two-terminal hyper edge 

and represents binary relation between neurons in the hyperneural network; a hyper edge with 

more than two terminals is sometimes called as multi-terminal hyper edge and depicts relations 

involving multiple neurons.  In equation (1), the N summation term corresponds to N groups of 

hyper edges that have different number of terminals. The second summation term represents all 

the two terminal edges in the network while the ith summation term reflects all the hyper edges 

with / terminals. Let T,1 denote the set of all hyper edges with / terminals then equation (1) can 

be rewritten as - 
TV 

_       E = K-   1/,-Vi-   X       I    Te UV] (2) 
ieV       i = l  eei1    jee 

A hyper edge e is incident to the vertex v if vee. The degree of a vertex v is the number of hyper 

edges incident to v. We note that the Hopfield model represents a fully connected 2-graph where 



= -9 (3) 

any neuron x connects any other neuron y, x ^ y, and {x, y) is an edge of the graph. Like 

Hopfield network, we assume that the hypergraph representation of the hyperneural network is 

free from self-loops (i.e., terms like 7 / / = 0) and the graph is undirected. Note, the quadratic 

terms denoted by the expression within brackets in (1) are the same as Hopfield equation. By 

allowing extra (iV-2) terms in (1), we introduce additional degrees of freedom at the cost of 

complicating the energy landscape of Hopfield network. However, for the purpose of modeling 

digital logic, the complicated energy landscape does not hurt because we deal with fixed weights 

on hyper edges. The additional degree of freedom provides the advantage of scaleability. Unlike 

Hopfield model, the HNN with N neurons can capture any relations between these N neurons. 

For logic gates the weights can be obtained using the truth table of the block and applying 

Mathematica to solve equation (1).  To illustrate, we consider a 3-input OR gate.  Assigning 

energy function for the OR gate EQR = 0(1) for all the eight consistent (inconsistent) states of a 

3-input OR gate, we get the 16 simultaneous equations listed in Table I which are solved for 16 

unknowns as: 
K = 0;  /! = /2 = /3 = /4 =-7]2 =-7i3 =-T23 = Tl23 =-l ; 

-7J4 = -T24 = -T34 = 7124 = 7} 34 = 7234 = ~71234 

An EQR expression obtained using these parameters can be expressed as- 

E0R =   -(1-V4){2(l-VD(1-V2)(l-V3)-1} + (1-Vi)(l-V2)a-^) (4) 
Figure 1 shows a hypergraph representation for EQR given in (3). Here circles denote vertices of 

the hypergraph and dark triangles denote hyper edges with more than two terminals. 

While we can find the energy function for all types of gates by solving the equation set, 

an alternative way to quickly get the energy function for all basic gates is to find the relation 

between the hyperneural networks for different gates.   This formulation finds a non-linear 

pseudo-Boolean function for an n input gate directly from its logic description.   To avoid 

confusion with the concept given in (1), we define the term as maximum return function (MRF), 
F„ate. (We have used F    te = - E„atela, where a>\.) Observe the following (in Table II)- 

(a) the expression (2Vi+2V2-l) represents a threshold function for the OR or NOR gate, 

(b) for the XOR or XNOR gate, the threshold function is (2Vi+2V2-4V4-l) , and 
(c) a gate and its single variable inversion have the same maximum return function but for V3 

and (1- V3) factor. 

To enhance the rate of convergence of a search technique, it is advisable to use scaling 

and change of variables if interaction between the variables can be eliminated . A function g(x) 

is said to be non-interacting if it is separable in its variables. In what follows, we discuss the 

substitutions for V['s in Table II that help achieve variable separability and develop a theory for 



hyperneural networks. Let Vj = 1, V2 
= xlx2> anc* ^3 = y in F/^jy where xi, xi, and y are 

binary variables. Then, FÄND = y^x^-l) -Xi*2- Substituting Vj = 0, V2 = (1 —Xj)(l -x2), 

and V3 = (1 -y), the MRP for an OR gate is obtained. These substitutions consider the enable 

inputs 1 (0) for AND and NAND (OR and NOR), and the algebraic function showing the func- 
tionality of a gate . For an XOR gate, V± = xj(l-x2), V2= (l-xi)x2, V3 = y, and V4 = 0 will give 

FIOÄ=y[2x,(l-2x2) + 2x2-l]-[x,(l-2x2) + x2] (5) 

To derive F^QR from the MRF given in Table II, we have used x' = x because x e {0,1}. Here, 

(1-2XJ) changes the logic Xj = 0 (1) to Xj = 1 (-1).   Note the similarity between the F„ate 

expressions with (2). 

Lemma 1 : A generalized expression for the maximum return function is given as 
Fgate = z(2/-D-/ (6) 

where f (z) is the function realized by (output of) the gate and is the right (left) side of 

functionality equations in Table II. ■ 
Lemma 1 is quite general as it helps obtain expressions for maximum return function for buffer, 

NOT, and fan-out lines as follows. Here m is the number of fan-out branches. 
Fbuffer     = y(2x-D-x 
FNOT      = d-y)(2x-l)-x (7) 
Ffan-out= Vi(2x-l)-x;  for/ = l,...,m 

Lemma 2 : (a) For a consistent state, Fgate= 0. 

(b) For an inconsistent state, Fgate is negative. 

Proof, (a) When z =/, equation (6) gives Fgate = 2/(/-l). Substituting/= 0 or 1 proves it. 

(b) When z ^f, then z = 1 (0) and/= 0 (1). In either case Fgate is negative ■ 
Lemma 3 : The consistent states of a gate is generated by maximizing Fgate =-\z-f\. ■ 

Method 

There are three steps to generate test pattern for a given single stuck-at fault of a circuit 

under HNN model: circuit modeling, fault injection, and consistent state finding. Given a circuit, 
the maximum return function of each gate Fgate is first constructed using Lemma 3. The energy 

function of the circuit, eckt, is the summation of the MRFs of all the gates. 
£ckt =       X Fga[e (8) 

all the gates 

A variable assignment satisfying that £ckt = 0 is a consistent state of the circuit. The set of all the 

consistent states is a logic specification of the circuit. 

Circuit modeling constructs the energy function for a given circuit in a manner we 

discussed above. Fault is injected into the circuit by constructing a fault circuit from the original 



circuit, adding a XOR gate for each primary output to force the outputs from both circuits 

differing from each other at least one primary output. Precisely, these are done by - 

1) For all the line / along the paths from the fault site to all primary outputs, assign an extra 

variable x\. 

2) For all the gate along the paths from the fault site to all primary outputs, get the maximum 
return function for the gate in fault circuit F'gate. 

3) For each primary output yt and its fault variable y\, add a XOR gate. The outputs of all these 

XOR gates goes to an additional OR gate whose output is forced to be 1. 

4) Sum all the MRFs getting from steps 2 and 3, and those describing the fault-free circuit. The 
result is the return function Fgale for the fault injected model. 

5) For the variable xi and xj at the fault site, x\ is assigned the fault value, and x[ is assigned 

the opposite value to the fault. 

The consistent states of the fault injected model satisfy F'gaK = 0. Since X = 0 and Y = 0 

implies X+Y = 0, a solution for Fga!e = 0 is found by solving equation set jF= 0 for all jFin Fgate. 

To help achieve this, we use satisfactionability approach. We begin by assigning 0 (1) to one of 

the variables (using heuristics, given below), then simplify the equation set. If no contradiction 

(viz. 1 = 0) is found, we pick up another variable and assign a value to it. This is done repeatedly 

until a variable assignment that satisfies the equation set is found. In case of contradiction, we 

backtrack to a previously used variable. Following heuristics can be used to assign a variable: 

a. Assign a logic value to a frequently occurring primary input or an internal line variable. This 

is achieved by obtaining a weight reflecting the number of times the variable occurs. 

b. Consider only primary input variables for assignment using the descending order of their 

weights. 

c. Assign primary inputs randomly. 

d. Use simulated annealing to generate the input assignments. 

Results, given below, are obtained with heuristic b which is a PODEM like strategy. It is 

different with the conventional PODEM in the sense that our HNN representation relies on a 

different theoretical foundation. By assigning logic values to neurons, we try to deterministically 

search for a zero energy state of the HNN i.e., the solution for the equation set J. Further, we 

apply a symbolic manipulation where some variables in the system are replaced by other 

variables. When these replacements occur, the variable-occurrence accounting is altered and the 

assignment ordering is, thus, dynamically changed. 

Experimental Results 

We coded our technique and tested it for Schneider, EC AT, C17, SN5483, and SN54181 

circuits on the Sun SPARC 10/41 workstation.   Table III summarizes the results using circuit 
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specifications, testable and redundant faults, fault coverage, and average time needed to test the 

circuit. In all the cases, our method and Hopfield model obtain 100% fault coverage. However, 

based on average time per fault, HNN method outperforms the existing NN approach.   In ; 

addition, we have obtained the number of aborted and redundant faults and fault coverage data ; 

for ISCAS'85 benchmark circuits.  These results are shown in Tables IV and V, respectively. - 

For comparison purposes, we have run MODEM (module oriented decision making) that is a 

deterministic ATPG approach based on PODEM but having extensions to improve performance. 

In Table V, we have borrowed results for PODEM and FAN. It is evident from Tables rv and V \ 

that our results are comparable to those obtained from some existing approaches. The difference \ 

in results can be attributed to two reasons. First, the symbolic strategy, used currently with the \ 

hyperneural network implementation, is responsible for its slack behavior.  Second, a possible 

reason could be the absence of a sophisticated fault simulator.   [Because of these reasons, the 

average time per fault in c432 through cl908 circuits is about 0.08 - 0.58 seconds, while in : 

c2670 through c7552 it varies between 1- 4 seconds.] Note, an automatic test generation method t- 
\ 

is of practical use if the test pattern generation and fault simulation interact effectively. PODEM t 

and FAN results are obtained using a modified concurrent fault simulator while MODEM uses 

Mike 2, a very fast state-of-the-art fault simulator approach . 

Redundancy Identification and Removal 

The redundancy identification and removal (RID) is important not only in combinational 

circuits to help improve their testability but also in a combinatorial model such as a fault tree 

with repeated events (FTREs) that is used to perform dependability analysis in fault-tolerant sys- 

tems. Our technique for RID using HNN employs two steps: First, the maximum return func- 

tions of all the gates in the circuit are formulated. Second, value assignment and simplification 

procedures are applied to arrive at the result. The proposed algorithm, implemented in C, is run 

on SPARC 10 machine for ISCAS'85 benchmark circuits. Tables VI provides the results. 

Reference [4] studies other techniques on the topic and gives a comparison with HNN based RID 

approach. 

Other Related Research 
We have also performed research on related topics such as CMOS testing, fault-tree 

analysis, evaluating signal probabilities in logic circuits, and fault simulation using pre-and post- 

processing. All these efforts were helpful in understanding different aspects of the ATPG 

problem. 
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Figure 1 

Table I 

vl V2 V3 V4 EQR Expression using (1) EQR Value 

0 0 0 0 K 0 
0 0 0 1 K -I4 1 

0 0 1 0 K -73 1 

0 0 1 1 K-/3-/4-734 0 

0 1 0 0 K -I2 1 

0 1 0 1 K-I2-I4-T24 0 

0 1 1 0 K —I-) — [3 — 723 1 

0 1 1 1 K -I2 -I3-I4- 723 - 7"24 - 734 - 7234 0 

0 0 0 K-Ii 1 

0 0 1 K -I{ -I4- 714 0 

0 1 0 AT-/1-/3-713 1 

0 1 1 K ~h ~ h ~ h ~ T13 ~ T14 ~ r34 - 7*134 0 

1 0 0 K -I[ - I2 -7J2 1 

1 0 1 K -I{ -12 -14 - T[2 - 7J4 - T24 - T124 0 

1 1 0 K -Ii -I2-I3- T\2 ~ 7*13 - 7*23 ~ 7"i23 1 

1 1 1 K -I[ - h ~ h - h ~ T\2 ~ 7l3 - 7l4 ~ 723 ~ 724 - 7*34 

-7l23 - r124 - 7l34 - 7"234 - r1234 

0 

Table IV 

Circuit C432 c499 c880 cl355 cl908 c2670 c3540 c5315 c6288 c7552 
No. of faults 524 758 942 1574 1879 2747 3428 5350 7744 7550 

MODEM 4 8 0 10 12 129 210 144 348 757 
HNN 4 0 42 0 15 212 311 83 32 312 

Note : The backtrack parameter is selected as 10 in both MODEM and HNN techniques. 
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Table II 

* The results help compare our approach with NN based technique. 

Table V 

Note : The backtrack parameter is selected as 10 in all the techniques. 

Table VI 

Gate Maximum Return Function, Fgate Output Function 

AND V3(2Vl+2V2-3)-VlV2 y = xlx2 
NAND ([-V3)(2Vl+2V2-3)-VlV2 1 -y =xix2 

OR V3(2Vi+2V2-l)-(Vi+V2+ViV2) 1-y = (l-x1)(i.x2) 

NOR (l-V3)(2V1+2V2-l)-(Vi+V2+V1V2) y = (l-
xl)(l-x2) 

XOR V3 (2 V!+2V2-4 V4-IMV1+V2+6^4+2^2-5^4-5^4) y =* 4(1-2^2)+ ^ 
XNOR (l-V3)(2V1+2V2-4V4-l)-(V1+V2+6V4+2VriV2-5ViV4-5V2V4) i-y = 

xl(l-2x2) + x2 

Table in 

Circuits Schneider ECAT C17 SN5483 SN54LS181 
# of Inputs 4 6 4 9 14 
# of Outputs 3 1 2 5 8 
# of Gates 8 9 6 36 65 
# of Faults 56 46 34 208 388 
Redundant Faults 2 8 0 0 0 
Testable Faults 54 46 34 208 388 
Fault Coverage 100% 100% 100% 100% 100% 
Average Time per fault (sec) 0.001 0.0027 0.007 .005 0.0178 
* Average Time per fault 0.12 0.43 - 3.3 - 

Benchmark Circuit C432 c499 c880 cl355 cl908 c2670 c3540 c5315 c6288 c7552 
% Tested 

Faults 
PODEM 91.5 99.4 100 99.5 99.5 94.6 95.5 98.3 99.5 96.8 
MODEM 99.43 98.94 100 99.36 99.63 96.18 95.30 98.06 95.92 90.66 

FAN 93.7 97.2 100 97.5 99.3 95.7 95.8 98.9 99.4 98.2 
HNN 99.43 100 95.54 100 99.36 94.76 93.64 99.53 100 96.48 

Average 
fault using 

time    per 
HNN ( sec) 

0.23 0.08 0.42 0.33 0.58 2.82 2.66 2.81 1.01 4.04 

Benchmark circuits C17 C432 C880 C1355 C1908 C2670 C3540 C5315 
Number of stems 3 89 125 259 385 454 579 806 

Number of Recon- 
vergence points 

2 92 113 394 250 357 600 799 

Number of 
Redundancies 

identified 

TA1 - - - - 4 29 93 20 
[B] 0 4 0 8 9 117 137 59 
[C] 0 0 0 0 8 40 124 22 
[Dl 0 0 0 0 8 41 136 23 

Total CPU time, sec    with D 0 0.59 1,94 7.93 9.13 15.19 40.63 67.68 
Note: [A] is Iyer and Abramovici's paper in Int. Conf. on VLSI Design, Jan 1994, p315; [B] means 

Schulz and Auth 's paper in IEEE CAD, July 1989; [C] & [D] refer to two versions of the 
proposed HNN based algorithm. 
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